

Impact of platooning on roads & bridges

Franziska Schmidt, Uni Gustave Eiffel

Outline

- Impact assessment within ENSEMBLE,
- Background on traffic loads and road infrastructure,
- Pavements,
- Bridges,
- Tunnels,
- General conclusion.

Impact assessment within ENSEMBLE

WP4: different Impact analyses

- Impact of platooning on roads and bridges
- Economic and environmental benefits of multi-brand platooning
- Impact on truck drivers and other road users
- Impact on traffic flow

Multidimensional assessment of impact of platooning!

Background on traffic loads and road infrastructure

Situation in France

Pavement:

Structural health (in % of total surface):

2040km of roads highly damaged in (metropolitan) France

Bridges:

22 years: Average time between first damage signs and repair

30% of stock needs maintenance or important repair actions.

Without changes, in 2037:
62% of pavement highly damaged,

6% of bridges out of service.

Reference: Réseau routier national non concédé : résultats d'audits, Ministère de la Transition écologique et solidaire, 2019.

Vital connections blocked for trucks

Country: Germany, Leverkusen

Construction Year: 1965

Use: 111.900 vehicles per day Closed from 09-2016 till 2020

Country: Netherlands, Gorinchem

Construction Year: 1961

Use: 93.800 vehicles per day of which

18.000 trucks

Costs of transport losses: 33 mil. Euros Closed to heavy traffic in Octobre 2016

Influencing demand

is necessary: (re)building costs time

as we first have to signal, prove by research, propose and demand budget, the allocation of budget takes time (politically), involve the public takes time, form a project, contract and start constructing.

In the Netherlands for the main infrastructure 10 yrs for pavements,

20 yrs for bridges, viaducts, ecoducts,

30 yrs for surge barriers / the delta.

Research questions

- In the context of
 - Aging infrastructure,
 - Limited budget for maintenance, repair, strengthening,
 - New vehicles or traffic management procedures,

the questions are:

- How to assess the impact of traffic loads on infrastructure?
- How to reduce the impact of platoons on road infrastructure?
- Which advantages to take into account (link with communication with infrastructure)?

Impact on pavement

Objectives

- Characterise the structural responses of pavements structures subjected to individual and platoon truck configurations.
- Evaluate the change in the pavement fatigue life due to the multiloading with reduced rest periods effect associated to truck platoon configurations.

Define truck platoon configurations pavement friendly.

Methodology

Characteristics of Heavy Vehicle & Loads, Cumulated traffic

Instrumentation on site

Several configurations of platoons (speed, distance between vehicles, etc.)

Considered Deformation (shape, intensity, etc.)

 $\varepsilon_{max} = \dots$

Wandering

Miner law

 $Np = \dots \hat{A}n = \dots$

Signal processing / Calculation of

different parameters

Fatigue law (new model)

Experimental program in Lab.

Reproduce in Lab. different configurations of platoons

For a HV, Pavement Design Tool Alizé ou ViscoRoute©

Conclusions on pavement impacts

- There are parameters that can be managed in truck platoon configurations in order for the pavement fatigue life to remain the same :
 - Traffic distribution along the year and along the time of the day,
 - Percentage of platoon penetration in the daily and annual traffic,
 - Truck loads,
 - Number of trucks in platoon configuration,
 - Wandering,
 - Inter-truck distances.
- Optimized management could be reflected in terms of:
 - (1) longer fatigue cracking/permanent deformation life,
 - (2) lower pavement structure thicknesses obtained during pavement design,
 - (3) later rehabilitation/maintenance treatments.

Impact on bridges

Situations to consider

Longitudinal issue: more trucks on bridges + less wandering

Horizontal issue: more braking forces on a bridge

Methodology

- Assessment of traffic on various types of bridges,
- Collection of types of structures (1, 2 and 3 span bridges, spans between 10m and 200m), many structural effects (bending moments, shear forces, tension in cable for L=200m),
- Collection of vehicles/traffics to be considered, and compared to platoons: isolated vehicles, current recorded traffics, modified traffic (introduction of platoons), ...

Results on the impact of platoons on bridges ENSEMBLE

- Platoons induce higher stress in the structures,
- Still inferior to the design stress,
- Nevertheless service life is reduced in general, but countermeasures are proposed.

Sayed, S. M., Sunna, H. N., & Moore, P. R. (2020). Truck Platooning Impact on Bridge Preservation. *Journal of Performance of Constructed Facilities*, *34*(3).

Impact on tunnels

Methodology

- For the tunnel issue:
 Meetings with a private tunnel manager (Tunnel du Mont Blanc)
 and public tunnel manager (CETU: Centre d'Etudes Techniques
 des Tunnels),
- Preparation of a questionnaire: physical and digital caracteristics of the infrastructure, ITS possibilities, traffic management possibilities, foreseen added value...,
- Questionnaire sent to PIARC committee for tunnels.

Tunnels and platoons

- Disparate situation:
 - Some tunnel managers are not in favor of platoons -> would request a dissolution of platoon before entering the tunnel,
 - Some tunnel managers are in favor of platooning -> reducing gaps between trucks.
- Not many quantitative results:
 - Positive impact: safety (better gap management),
 - Negative impact: higher potential fire loads,
 - Outcome could be slightly beneficial.

General conclusions, perspectives

Conclusions

- Multi-brand platooning is affecting the road infrastructure,
- Parameters change the impact of platoons on road infrastructure:
 - Time gap between trucks,
 - Wandering,
 - Authorization for trucks during winter/summer or along the day,
 - % of trucks in platoon configuration,
 - Loads of the trucks.
- Awareness of infrastructure managers is needed.

